
RD-R159 596 NUMERICAL SIMULATION OF THE INTERACTION OF A VORTEX 1/i
WITH STATIONARY AIRFO .(U) NATIONAL AERONUATICS AND
SPACE ADMINISTRATION MOFFETT FIELD C..

UNCLASSIFIED G R SRINIVASRN ET RL 12 JAN 84 F/G 28/4 NL

El~lllllEEEEE



LL. JI. .

.9&'

AQ.

- ILI

* 1.6

MIROOY EOLTINTETCLR
NA~tOAL BRLAUOF SANDADS- 963-



id

AD-A159 596

AIAA-84-0254
Numerical Simulation of the Interaction of a
Vortex with Stationary Airfoil in Transonic
Flow
G.R. Srinivasan, Flow Simulations Inc.,
Sunnyvale, CA; and W.J. McCroskey and P.
Kutler, NASA Ames Research Center, Moffett
Field, CA

~~~ --_1Z
985

S 1his Dcmne'tnt has been ap-"(ove

* I p.lh: ee s Sndae; itsdi-t~~ibuL, o n e;ulmi'-d

AIAA 22nd Aerospace Sciences Meeting
January 9-12, 1984/Reno, Nevada

1 859 eeyeai Atuaf
:!..- e3 .^. r...... -. ... .. . . .



RFPRftflJCMo AT GOVOAWW IXPPNSE .L

AD-A 159 596
AIAA-84-0254
Numerical Simulation of the Interaction of a
Vortex with Stationary Airfoil in Transonic
Flow
G.R. Srinivasan, Flow Simulations Inc.,
Sunnyvale, CA; and W.J. McCroskey and P.
Kutler, NASA Ames Research Center, Moffett
Field, CA

' h ~i n ent ha. been approves? 4AIM22n frpubi release and sale; itsd
diztributian is unlimited.

AIAA22ndAerospace Sciences Meeting
January 9-12, 1984/Reno, Nevada

-Z 'Z ~ -- Z_



- - V - ;w

61

*j W~j ;o U011
-TPuO3 a42 301 "332OA aql JO uOTITsod-x sfloaueupleuT 43M suOTWvTJRA l3uamom-Su~T4qld puru 3UV 91 '2T

AX

p.-

0

Z'- AA
0

90

A IW Al AI) Vo=J '.0 D '9O '-W 'IOJ 90OV179 VD)VM N 1-393alul Kpvaisu xalOA-TTOIATE uP 2upinp suo1inqTIISTP ainssaid snoauvuvsuj jo silnsai jaingi cl *Aiv

x
0'L 9 9' p Z' 0 Z'- O S' 9* V Z' 0 Z'- 0*L 8 9 t Z' 0 zl- 0L S' 9' V* Z 0 Z*-

(4I

d __ __d_ d d_ _ _ _ _

0.9 N A'l A O= Ax AX A*L

(qe

Wi~ddfl

0 3
d d

0 Ax Ic 0 .Ax 
9 .0 -AX O~t AX 'L

dlSNix-I I N3IVJNH -1A09 I V 0i Lil 1(i()kth 0I



=) '9'0 'N 'TTOJJTU 90MV~9 VDVN :uoT3VI41uT Aprsun
xallOA-TTO~lTU ue Supinp sanoluoo ainssaid pue aaqtmnu tpeW pTaTj IWTj aqj jo siflsai Iolng 11 -TA

*A Arl9o- Ax -I- . x (90 ) fro -I

-s~nluo:) aflBssai (p) -sinoluoD iaqmnu qze (o)

0 2-

AIA-

00 A

*07

9z 0- T- AXAD(

~ A~~q 7 ' I0 A

3SNi~dX3 INMVNU3AOD LV U3:OflUU&Jd3kl



". -1.2EULER
-1.2 L xv = -9.5 xv =- 1.0 xv =-0.3 0

-. 4 _C' C C C;

C p 0

.4
UPPER I

.8 -- LOWER '.
.8 a) Ob) E c) d)
1.2L"

-1.2 xv =0.2 xv =0.5 xv =1.0 x, 5.0

-4 _ __ C_4c*

CP 07

.4

.8

e) f) g) h)
1.2

L -.8 ATRAN2
- R8 xv  -9.0 xv =-1.0 xv =-0.3 xv  0

-4 i- p* p C p

o p
.4

.8
a) b) c) d)

1.2

8 xv = 0.2 xv =0.5 xv =1.0 xv = 5.0

Cp 
*

-.4 _______C____

.4

.8
e) *f) g) h)

1.2 '0
-.2 .2 .4 .6 .8 1.0 -. 2 .2 .4 .6 . 1.0 -2 .2 .4 .6.8 1.0 -.2 0 .2 .4 .6 .8 1.0

X x X x

Fig. 13 Instantaneous pressure distributions during an airfoil-vortex unsteady interaction: NACA 64A006
airfoil, M_ = 0.85, 1 = 0° , r = 0.2, y = -0.26.
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Fig. 14 Lift and pitching-moment variations with instantaneous x-position of the vortex for the condi-
tions of Fig. 13.
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Fig. 12 Instantaneous pressure distributions during an airfoil-vortex unsteady interaction: NACA 64AO06
airfoil, M_, 0.85, a =o*, r =0.2, y = -0.52.
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Fig. 11 Comparison of the unsteady and quasi-steady thin-layer Navier-Stokes solutions of the vortex-
airfoil interaction: NACA 0012 airfoil, M_, = 0.8, a 0.Q5%, Re =5.78 mul/ft, F 0.2, for unsteady case

x = 0. y = 0.26, for quasi-steady case x0  0, Yo -0.26.
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conditions of Fig. 9.
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(a) Vortex fixed (quasi-steady). (b) Vortex convecting at Q_, (unsteady).

Fig. 7 Schematic of the vortex interaction configurations considered.
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(a) Thin-layer Navier-Stokes. (b) Euler. (c) ATRAN2.

C L = 0.0576, CD= 0.0146. CL =0.0604, C D = 0.0118. C L 0.1000, C D= 0.0192.

Fig. 8 Quasi-steady pressure distributions of the interaction of a fixed vortex with NACA 0012 airfoil:

M, 0.8, au 0.5*, Re =5.78 mil/ft, r 0.065 (CL 0.13), x = 0.5, Y = -1.
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Fig. 5 Pressure distributions in the leading edge region for the NACA 64A006 airfoil with and without

leading edge modification in ATRAN2 code: M. = 0.85, a = 00, F = 0.2 (CLV = 0.4), xv = -0.3, Yv = 0.26.
Between x = -0.05 to 0 and x = 0 to 0.05 and at y 

= 
0, the grids have the following number of grid

points: coarse mesh has 5 + 9; standard mesh has 8 + 9; fine mesh has 8 + 25; while the Euler grid has
31 points between x = 0 and 0.05.
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Figure 12 shows Cp plots for the Case 1 where propagation. In contract, as shown by the results
the vortex of strength r = 0.2 is initially located presented here, the Euler code predicts this kind of

. at x. = -9.5 and yo = -0.52. Euler and ATRAN2 leading edge effect only for stronger interactions.
codes predict pressure fields which are in qualita-
tive agreement. As before, the influence of the Figure 16 shows the lift and moment coefficient
vortex on the airfoil flow field begins for vortex plots as a function of vortex location for this

position upstream and continues until the vortex is interaction.
Oc'- downstream of the airfoil. However, the most rapid
0 and dramatic changes occur when the vortex is The description of the flow field during the

.- ,between one chord length upstream of the leading unsteady interaction process is delineated in

edge of the airfoil and the trailing edge. From the Fig. 17 in the form of Mach number and pressure
• Cp plots presented in Fig. 12 for the vortex loca- contour plots. The effect of doubling the vortex

tion at the leading edge and downstream of this, it strength is shown in Figs. 17a-17d. Figures 17a

can be seen that both Euler and ATRAN2 solutions and i7b show contour plots for Case 2 (r = 0.2) when
show large similarities at all x-stations; even the the vortex location is one chord upstream of the
shock waves on upper and lower surfaces are quite leading edge of the airfoil. Figures 17c and 17d
sharp for the two solutions. are for Case 3 (r = 0.4) and at the same vortex

location. The shock wave location and its movement
"-. Figures 13 and 14 show a similar comparison of due to doubling the vortex strength are apparent

Cp plots for Case 2 where the vortex of strength from these plots. Figures 17c and 17d are for
r = 0.2 was initially located at the same Case 3 (r = 0.4) but for the case when the vortex is
x-location of xo = -9.5 but closer to the airfoil at xv = 0.2 (right below the airfoil). Comparison
at yo = -0.26. For this particular set of condi- of these figures with Figs. 17c and 17d shows a tre-

tions, the interaction is quite severe in terms of mendous movement of the lower surface shock wave and
the small disturbance approximation. The ATRAN2 modification of the leading edge flow as the vortex
numerical solution seems to be marginally stable passes by. The Mach contour upper limit is fixed at
depending on the fineness of the grid geometry and 1.2 in these plots and this enables one to visualize
on the size of the time step At. the progressive decrease of lower surface pressure

on the airfoil as is evident from the corresponding
The pressure distributions on the airfoil are increase of the local Mach number of the flow field.

shown for tL]is case at eight x-stations of vortex
position for the two methods of calculations in
Fig. 13. As before, the dramatic changes occur when 4. Summary and Conclusions

the vortex is within one chord from the airfoil
leading edge. Before the modification of the sur- A two-dimensional numerical simulation of the
face boundary condition in the leading edge region, interaction of a concentrated vortex with a station-
Eq. (17), was made for the ATRAN2 code, the code ary rotorcraft airfoil in transonic flow has been

. predicted a rapid development of a sharp suction studied. Three different computational methods,
peak followed by a rapid compression-like wave in which solve the thin-layer Navier-Stokes, Euler,
the leading edge region. However, with the modified and Transonic Small Disturbance equations, were

boundary condition, Eq. (19), the magnitude of the used. The NACA 0012 and NACA 64A006 profiles were
peak was dramatically reduced as pointed out in selected for the airfoil shape. The interacting

-. , Section 2.6. With this the Euler and ATRAN2 codes vortex, having a Lamb-like velocity distribution,
predict results which are in good qualitative agree- was introduced as a perturbation of the mean flow
merit. Even the gross aerodynamic quantities are in into the governing equations. The equations were
very good agreement as seen in Fig. 14 where lift then solved implicitly for the interacting flow

and moment coefficients are shown as a function of field. The required computational grids were
the vortex position for this interaction, generated by an algebraic grid generation scheme.

Typical run times for these computational methods
" . Figure 15 shows a similar type of pressure dis- on the NASA Ames Research Center CRAY X-MP machine,

tribution plots as Fig. 13 but for Case 3 where expressed as CPU time per time step per grid node,
the vortex is located initially at the same location were as follows: thin-layer Navier-Stokes
as Case 2 but doubled in strength. The rest of the = 2.1 x 10

- 
sec, Euler = 1.8 x 10

-
4 sec, and

conditions are identical to that of Case 2. No Transonic Small Disturbance = 1.0 x lO1
5
sec.

ATRAN2 results were obtained for this case as these
conditions are quite severe and exceed the limits of Most of the interactions considered in this
small-disturbance approximation. paper are strong, in the sense that the vortex pro-

duced significant and nonlinear distortions of the
Pressure distributions are presented for the flow field, but relatively weak in the sense that

interaction history at eight x-stations of vortex they are within the scope of the transonic small
location. As before, the trend of events is similar disturbance assumptions. For such cases, whether

to that shown in Figs. 12 and 13. The sharp suction the vortex was stationary or moving, the three com-
peak of the pressure distribution at the leading putational methods gave qualitatively similar
edge, mentioned before, is the most noteworthy event results. The close agreement of the thin-layer
occurring for the vortex location within one chord Navier-Stokes and Euler results indicates that vis-
from the airfoil leading edge (e.g., x =- 0.5). cous effects are negligible for these interactions.
Using the transonic small disturbance code without In general, ATRANZ results are in good agreement
leading edge correction for the surface boundary with the results from the other two methods,

condition, both George and Chang' and McCroskey and although needing a special leading edge treatment
Coorjian4 in independent investigations have for thin airfoils; without this treatment, ATRAN2
observed this kind of leading edge behavior even for results overpredicted the interaction effects in

the weaker vortex case mentioned above (Figs. 12 the leading edge region. In this sense, previous
% and 13), and they concluded that this is possibly studiesl', of such interactions using the transonic

responsible for a "blade-slap"-like acoustic wave small disturbance method are in error.

8



Fig. 6, shows the dramatic influence of the vortex stream of it, and the return of the flow around the
on the airfoil flow field. Since the vortex induces airfoil to the original state is an extremely slow
spacially varying downwash downstream and upwash process. This is also evident from the plot of the
upstream of its location and also positive stream- variation of the lift and moment coefficients as a
wise velocity above and negative stream velocity function of the vortex position as shown in Fig. 10.
below its location (because of the sense of its This contrasts with incompressible behavior where
rotation, see Fig. 7), its influence on the airfoil the influence of the vortex is felt approximately
flow field is determined by where it is located with equally far upstream and downstream of the
respect to airfoil. The shock wave on the lower airfoil.

2 7

surface has moved downstream with all three methods
of computation, ATRAN2 showing much larger influence Comparison of pressure distributions for
than the other two methods. Evidently the small vortex-fixed and -moving cases shows that the
disturbance, irrotational approximation to Euler unsteadiness greatly attenuates the influence of
equations introduces errors in the solution, the vortex on the flow field around the airfoil, as

shown in Fig. 11. The lift and drag coefficients
Figure 8 also lists the coefficient of lift and for this example are CL = -0.06332 and

drag values. Comparison of these numbers shows the CD = 0.02186 for the unsteady case and
extent of the vortex influence on the flow field of CL = -0.30152 and CD = 0.04578 for the quasi-
the airfoil. For example, the lift and drag coeffi- steady case. The aerodynamic force coefficients
cients for the baseline viscous case are respec- for the quasi-steady case, thus, are significantly
tively 0.09928 and 0.01173; with the vortex inter- higher than the values for the unsteady case. The
action these values change to CL = 0.05757 and Mach number and pressure contours show the differ-
CD = 0.01457. ence in quasi-steady and unsteady flow fields of

such interaction. It is interesting to note that
(b) Vortex Convecting with the Flow. So far, for the quasi-steady interaction of this vortex,

the results of vortex interaction with an airfoil vortex induced separation of the boundary layer was
were presented where the vortex was fixed at one observed on the lower surface of the airfoil. But
location in the flow field. In this section, the no separation was observed with the unsteady inter-
vortex is made to convect freely at free stream action of the same vortex.
velocity Q_ as shown in Fig. 7b and allowed to
interact with the flow field around the airfoil. 3.3 Interaction of a Vortex with the NACA 64A006
This case approximately simulates a practical flow Airfoil
situation on a helicopter blade in contrast to the
fixed vortex case. The use of this airfoil has special signifi-

cance because of the numerous numerical and experi-
For a moving vortex in compressible flow, the mental studies done with it. It is thinner than the

cylindrical velocity distribution is given by NACA 0012 section and has significantly smaller
Eq. (10). The velocity from Eq. (10) and the pres- leading-edge radiu.s, so it will serve as a test case
sure field from Eq. (11) induced by the vortex are to check the applicability of the Transonic Small
introduced through the vector 40 in Eq. (15) as Disturbance equations particularly near the leading
done for fixed vortex case before, edge in the presence of vortex-induced downwash

against Euler and Navier-Stokes equations which are
To compute the interaction flow field, the vor- exact.

tex is initially positioned at, say, the upstream
grid boundary or any suitable upstream location Three cases are computed for this airfoil
(xo,yo) of the airfoil and then made to convect with interacting with a moving Lamb-like vortex using the
the flow at the free stream velocity and along a Euler and ATRAN2 codes, for the following
straight line aligned with the free stream. Typical conditions: %
resulting solution of such an interaction for the
case of vortex of strength F = 0.2 (CLV = 0.4) ini- Case 1: M = 0.85, a = 0°, r f 0.2,
tially located at x. = -5.5 and yo = -0.26 and
moving with the free stream velocity is presented in x0 = -9.5, y = -0.52
the form of Cp plots in Fig. 9 at several stages

of vortex passage across the airfoil. The pressure Case 2: M = 0.85, a 0', r = 0.2,
distribution (Cp) presented in Fig. 9 generally
typifies the history of interaction of the airfoil x = -9.5, y = -0.26
flow field as the vortex passes by. Tb- three 0
methods of computations used here give esults which Case 3: M- = 0.85, a = 00, r = 0.4,
are in qualitative agreement. More results for
interactions involving vortex of different strengths x = -9.5, Yo = -0.26
are detailed in the report of Srinivasan. 26

Examination of the pressure distributions of Figures 12-17 summarize the results of these

Fig. 9 show the expected initial development of the test cases. In all these cases, the airfoil i-
pressure difference from the baseline case to resem- dence is zero and the dramatic difference in Cp
ble the case of increasing negative angle of attack between the upper and lower surfaces is due solely

(downwash influence) as the vortex is approaching to the vortex interaction. As before, the influ-

the airfoil. This influence changes to that of a ence of the vortex is felt more on the lower surface

positive angle of attack (upwash) as the vortex of the airfoil than the upper surface, a result of

passes behind the airfoil. Although the initial nonlinear effects; linear small-distrubance calcu-

influence of the approaching vortex is felt by the lationsk showed the effects of the vortex to beairfoil when the vortex is only a few chords equal and opposite on the upper and lower surface

upstream of it, its influence decays very slowly of the airfoil.

even when the vortex has passed many chords down-
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region; in the present case, upon the maximum value Eq. (15), the boundary conditions are applied to
of dyb!dx at the grid point nearest the leading the solution variable q instead of the perturba-
edge and on its variation at neighboring grid points. tion quantity (q - qo). The advantage of this
This unsatisfactory state of affairs is illustrated perturbation scheme is that it enables one to main-
in Fig. 5a. tain accuracy even in a coarse far field grid. The

non-uniformity does not have to be resolved in the

Keyfitz et al.
2 3 

concluded that the errors in coarse-grid outer flow. Near the body, however,
the small-disturbance results are due to the inher- the grid is fine enough to resolve both the non-
ent approximations, and not to truncation errors. uniform stream (jo) and the deviation from it
However, an improvement in the method can be (q - qo). This approach was first suggested and
obtained by introducing a simple correction in successfully used by Buning and Steger

3 
to calculate

Eq. (17); namely, by replacing Q_ by an analytical an inviscid shear flow past a cylinder.
approximation to the local velocity u near the
leading edge. This is done in the spirit of a thin- 3.1 Baseline Solutions
airfoil blunt leading-edge correction, e.g.,
van Dyke,

2
4 who derived a uniformly valid second- Baseline solutions represent the steady state

order solution for the subsonic flow near parabolic solution of stationary airfoils in a uniform free
leading edges. An excellent approximation to stream. The airfoils considered are NACA 0012 in a
van Dyke's surface-speed distribution function Q is free stream of Mach number 0.8 and at 0.5

° 
angle of

attack and NACA 64A006 at 0* angle of attack in a

(19) free stream of M. = 0.85. For the thin layerQ(x,r,,M) Q (19) Navier-Stokes solution, a nominal value of Reynolds
number, based on the chord of the airfoil and free

where S
2 =  

- M!. Equation (19) reproduces stream velocity, of 5.8 million is used. Turbulent

van Dyke's theory exactly for incompressible flow. boundary layer flow is assumed for the entire
." airfoil.

For compressible flow, Eq. (19) can be interpreted a
as effectively increasing the leading-edge bluntness The baseline Navier-Stokes solution is computed
in proportion to I/a. It may be mentioned in pass- by setting 40 0 in the algorithm, Eq. (15). In
ing that this compressibility correction bears a by set nume0inah algorithm eq. () In
superficial resemblance to the classical similarity ts ase tnuerical aorim redes Thea

rueso lnarzd hn-ifoltheory. 
2 5  However, standard (non-perturbed) form of Steger.

2  The base-
rules of linearized thin-airfoil theory.d

s
tHowe line Euler solution is generated by turning-off vis-those rules are derived using the small-disturbance costrsadetng 0 nE.(5)ndn

boundary condition, Eq. (17), and are therefore ques- addition making suitable changes to accommodate sur-

tionable %ith regard to the details of the flow in ac dition he ba noluton
the eadng-dgeregon.face boundary conditions. The baseline solution

the leading-edge region. using Transonic Small Disturbance equations is

Figure 5b shows the effect of replacing 4- by obtained using ATRAN2 code,
4 
which is a particular

version of LTRAN2 code.
5 

The steady state solution
Eq. (19) in the airfoil boundary condition, Eq. (17). soadyfstate soluin
This treatment renders the transonic small- obtained for the NACA 0012 airfoil is shown in
% sFig. 6 for the three methods in the form of plots
disturbance solutions almost, but not completely, of coefficient of pressure (C ). The agreement
independent of the grid spacing. It also brings b
them into much better agreement with the Euler solu- between the Navier-Stokes and Euler solutions is

tion. Acoringy, te rsuls i thi paer ere good, indicating that the viscous effects are rela-tions. Accordingly, the results in this paper were tively small for this case. However, ATRAN2 solu-
obtained using this treatment. tion predicts the lower surface shock wave to be

weaker and to occur upstream of that predicted by

the Navier-Stokes and Euler codes. Nevertheless,3. Results and Discussion all three methods give solutions which have good

A two-dimensional approximation of helicopter qualitative agreement.
blade-tip vortex encounter in forward flight with
the following blade is obtained by simulating the 3.2 Interaction of a Vortex with NACA 0012 Airfoil

interaction of a concentrated vortex with a station- (a) Vortex Fixed in Space. An analytical vor-
ary rotorcraft airfoil, as indicated in Fig. 2a.
A vortex with a finite core and a Lamb-like analyti- tex, whose center is located at a point (xo,yo ) inthe flow field as shown in Fig. 7a, is made to
cal velocity distribution is considered to interact

interact with the airfoil flow field. For Lamb-like
withvortex with a finite core and fixed in space, the
airfoils. The cases of an interacting vortex fixed cylindrica fenity doru n is in in the
in space in the flow field (quasi-steady) as well as cylindrical velocity distribution is given in the
that convecting with the flow (unsteady) with the small disturbance limit for a compressible flow by

free stream velocity are considered. Viscous as well
as inviscid flow field computations are performed. (1- 

- r 2 /a 
2

Thin layer Navier-Stokes equation set (Eq. (1)) is a_ r cs
used for viscous flow field computations and Euler
and ATRAN2 equation sets are used individually for The velocity field from Eq. (20) and pressure.'," ~inviscid flow field computations. ,
ii d o id m tnfield from Eq. (11) of the vortex are introduced

into the airfoil flow field through the vector q
The numerical algorithm used for the viscous in E afoil flow field o co-

interacting flow field is given by Eq. (15). This in Eq. (15) and the resulting flow field is com-
a perturbed form of the standard algorithm of puted. Figure 8 shows steady state pressure distri-

is aerture th e otandn-uloritm o butions in the form of Cp plots for this interac-

Steger 2 where the disturbance or non-uniformity, q 0, to optdfo he ehd o otx'
tion computed from three methods for a vortex

is supposed to be known. In the present study q0  located at xo = 0.5, yo = -1 and of strength
is a solution of Euler equations that represents a
vortex in a uniform flow. With the algorithm r - 0.065 (CLV - 0.13). Comparison of pressure

distributions of Fig. 8 with the baseline solutions,

6
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Lindemuth and Killeen,'4 Briley and McDonald, s'1 6  Cl = I -M!
and Beam and Warming.1 7 'a The procedure is a
generalization of conservative, approximate factor- C2 = - j(y + I)M!
ization scheme in the "delta" form. The procedure
has been successfully applied, for example, by 4 = + V +
Steger and Kutler,

1 9 Kutler et al.,
20 an rnia

et al .21 for inviscid flows and by Steger 2 andPulliam and Steger22 for viscous flows. Use of the It is important to note that Eq. (16) is nonlinear

implicit procedure helps remove the stiffness of the and independent solutions are not superposable, but

problem introduced by a fine mesh. that the velocity field can still be split into

three parts: I) the (uniform) free stream, 2) a

As applied to Eq. (1) the implicit, spatially prescribed vortical disturbance, 4v, etc., and

factored algorithm using Euler implicit time differ- 3) the unknown disturbance potential V$.

Sencing takes the form The usual small disturbance boundary conditions

(I + hSAn _ IJ-V AJ) are flow tangency on the body, no disturbances at
x - - and y - ±-, and Cp = 0 at x o -. The new

(hh n J-IVA)(,in _in) small-disturbance boundary condition on the body
x (I + h6 n + H n _ EIJi n ) n o Yb = F(x,t) (where Yb - F(x,t) defines the airfoil

surface), becomes

-At [,,(in - Ed ) + ,(pn - fp) - Re-, 6,§n3 = -1~ Iyo o Yb Jvv(17)

adx v
- EEJ-1 [(V )2 + (V A )2]J(n - n) (15) y=o

The wake behind the airfoil is represented by
where A, B. and M are the Jacobian matrices a branch cut through which vorticity convects from
A = aEIB, B = aF/ad, M = a/VD and I is the the airfoil to the downstream boundary. Across this
identity matrix. 6r, 6 n  are the spatial central branch cut the pressure is continuous; this is
difference operators, A and V are forward and back- expressed as follows:
ward difference operators, e.g.,
A = + A4,r) - d(Cn) and for convenience (rx + rt) = 0 (18)
AE =1= An is assumed. Indices denoting spatial t wake

location have been suppressed. The time index is
denoted by n, t = (n At) corresponds to Euler Equation (16) and its corresponding small-

implicit time differencing and in - 4(n At), disturbance boundary conditions are solved by the
Sc te d ee and E are the implcit and Ames code ATRAN2," which uses the basic time-

explicit smoothing coefficients. In writing Eq. (15) accurate, implicit numerical algorithm of LTRAN2.
5

it is assumed that Ao = A and BFurther details of this code are described in Ref. 4.
it s ssuedtha A A ndBO aB where

A0 = 1Eo/1qo and B0 = 1Fo/1qo. 2.6 Small-Disturbance Calculations in the

Fourth-order dissipation terms such as Leading-Edge Region
CEJ-I(V AC) 2J(4 - do) in Eq. (15) are added explic-
itly and these help to control possible numerical The small-disturbance approximation has a well-

instabilities. The addition of the implicit second known deficiency in the leading-edge region of air-

order difference terms, with coefficient eI, oper- foils, where neither the disturbance velocity AO
ating on (Ad -A) extends the linear stability nor the usual airfoil boundary condition, Eq. (17)

bound of the fourth-order terms.
2 2  is small enough to satisfy the basic premise of the

theory. 23  The resultant loss of accuracy is often
Central differencing is used throughout the tolerable in other applications, but in the present

solution domain, except in regions of supersonic vortex-interaction cases it poses a dilemma in

flow before a shock wave where upwind differencing interpreting the results for airfoils with small

is used. The use of upwinding for shocks is wide- leading-edge radii. For example, the NACA 64A006

spread in transonic potential calculations. Upwind airfoil, with the leading edge radius re/C- 0.0025,

differencing before shocks has a stabilizing effect exhibits a rapid expansion and suction peak very

and improves the accuracy of the calculations, near the leading edge for small angles of attack or
other vertical velocity perturbations. Accordingly,

2.5 Transonic Small Disturbance Formulation the small-disturbance results presented in Refs. 1
and 4 showed strong vortex-induced leading-edge

The unsteady transonic small-disturbance equa- peaks to form and collapse rapidly on the lower sur-

tion is based on the assumption of irrotational face of this airfoil. If real, this phenomenon

flow, which allows the velocity field to be would seem to be a candidate source of acoustic

expressed in terms of a potential. The vortex is radiation, such is the intense impulsive noise in
introduced as a prescribed perturbation that is helicopter aeroacoustics known as "blade-slap."

itself a solution to the Euler equation. Then the Therefore, special attention was given to this point
equation for the disturbance potential due to the in comparing the small-disturbance and Euler
airfoil itself becomes results.

AOtt + BOx - Ci(x + C2 (Ox + u + y (16) Two important facts quickly emerged in the com-
yy parison of numerical results. First, the Euler

solutions showed much smaller magnitudes of the
where leading-edge pressure fluctuations, as will be seen.

.A Secondly, as reported elsewhere, 2  the small-
disturbance results were found to depend upon the

B - 24 computational grid spacing in the leading-edge

5
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(usually free-stream value) and used to get e from 1
Eq. (7). To ensure continuity across the wake cut
a-b and d-e, the flow variables are linearly extrap- Pu
olated from both sides of the cut and then averaged io =j- (14)
to obtain the values along the cut. 0v

Along the body surface n(x,y,t) = 0, the eJ
no-slip condition for viscous flow without suction
or injection is given by setting V E 0 and U a 0.

2.3 Grid GenerationThe velocity components u and v are then calcu-
lated from

Surface conforming grids, that is, grids in
r lwhich one coordinate falls on the body surface, are

-vY (8) boundary condition procedure and improve the over-
-J-t) needed to simplify the application of the bodyLx all accuracy of the numerical scheme. The grid

generation process can be divided into several
The pressure along the body surface is obtained tasks: a) development of accurate surface represen-

from a normal momentum relation given by tation, b) distribution of body surface points to
S+ 1+ +yield a properly clustered, smoothly varying grid,
Pn(n2 + q2)1/Z = + u x + n Tfy) (9) and c) generation of outer boundary and interior
n x y y mesh. While several methods of grid generation

where n is the direction normal to the body sur- techniques are currently available (elliptic

face. This equation is solved implicitly in for solver and hyperbolic solver
1 ), one that is suit-

pressure at the body. The density at the airfoil able for the present application, based on past

surface is obtained by extrapolation from the grid experience, is an algebraic method developed at
Ames Research Center. The method has been discussedinterior. Now since the pressure and density area 12

known at the surface, the total energy is calculated in detail by Pulliam et al. and is based on the

from Eq. (7). The boundary conditions are of low original algebraic grid generation technique ofEisemanI3; the reader is referred to Pulliam
order and hence require that the grid lines be clus- 12
tered and normal at the body surface. et al. for details. Briefly, the airfoil coordi-

nates are taken as input and are used to define the

For the vortex interaction, a Lamb-like analyt- airfoil surface. On the surface, grid points are

ical vortex
8'9 with a finite core is specified. The distributed with clustering at the nose, trailing

cylindrical velocity of such a vortex is given for a edge, and at prescribed locations along the uppercompressible flow by and lower surfaces of the airfoil to resolve shocks.

Coarse grid solutions can be used initially to

ve(r) 2 
2  determine the locations of shock waves. The grid

S= (1- e - r /a ) (10) lines are also clustered in the normal direction at
a_ r the surface to resolve the boundary layer. This

grid generation scheme is quite fast and will gener-
where v0  is the cylindrical velocity and is a func- ate a 161 x 52 grid, say, around a NACA 0012 airfoil
tion of only the radial distance r from the vortex in less than 10 sec of CPU time on a VAX 11/780.
center, P = r/21a-,C is the dimensionless vortex
strength, a, is the core radius, assumed equal to Several typical C-grids generated by this
0.05 in this study. For this vortex in a uniform method are shown in Fig. 4 for NACA 0012 and NACA
free stream, the pressure field induced (by this 64A006 airfoils. The grids of Figs. 4a and 4b are
vortex) is determined using the radial momentum 161 x 52 in size and are for viscous flow couiputa-
equation tions of NACA 0012 airfoil and extend 6 chord

"2 lengths in all directions. The spacing of first
dpv  PvV2 node normal to the surface is 4 x 10- 5. The grid of

dr r (11) Fig. 4c is for inviscid flow (Euler) computations of
NACA 64A006 airfoil and has dimensions 181 x 45.

in conjunction with the energy equation for constant The grid extends 10 chord lengths upstream and in
theenthalpy flow given by y-direction and 6 chord lengths downstream of air-

e fo efoil. The grid is clustered along the body surface

and in the radial direction as shown in the figure.
Y 1 H (12) The spacing of the first node normal to the surface
- I v 2 is 2 x 10-3 chord. The grid of Fig. 4d is used for

ATRAN2 computations of NACA 0012 airfoil. This is

where Q
2 

= u2 + v 2 
and Ht is the total enthalpy. a 113 x 97 straight line grid extending 200 chord

Once the pressure is known, density can be deter- lengths in all directions with clustering at the

"" "'" mined from Eq. (12). Having known the pressure and leading and trailing edges as shown. The ATRAN2
grid used for the NACA 64A006 airfoil has the samedensity, the total energy ev for the vortex is spacing in the y-direction, but 186 points in the

,ive byx-direction and finer clustering near the leading

-" edge.

"' +- PvQ( 2.4 Numerical Algorithm

This completes the determination of the vortex flow The numerical algorithm used to solve the
vector conservation-law form of the thin-layer Navier-

Stokes equations is based on a class of completely
implicit noniterative, ADI schemes developed by

4
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2. Numerical Formulations The metrics of Eq. (4) are not known analyti-
cally and therefore are to be determined numeri-

2.1 Governing Equations cally. To accomplish this, second-order central

difference formulae are used at interior points and
The governing partial differential equations three-point one-sided formulae are used at the

are the unsteady, two-dimensional, thin layer boundaries.

Navier-Stokes equations. These are written in non-
dimensional, strong conservation-law form for a The viscous flux vector S is written in the

perfect gas using the generalized independent coor- context of thin layer model
2 

and hence is valid for

dinate system of , n, T and in the perturbation high-Reynolds number turbulent flows. In the via-

form
3 

as cous stress terms of the flux vector S, the vis-

cosity coefficient p is computed as the sum of
S (q-q) + a(E- Eo

) 
+ D (F - Fo) =Re

1
aS (1) Ilaminar + turbulent for turbulent boundary layer.

•4Sutherland's equation
6 

is used to evaluate

where Plaminar; the turbulent eddy viscosity, p rbulent ,
is computed usinj a two-layer algebraic esdy

" pu viscosity model.

u,= I The generalized coordinate system

[Pe= 
4(x,y,t)

is the flow field vector we are solving for, o is (6)
the solution of the Euler equations = n(x,y,t) (6)

+zqo + 3 Eo + ajo = 0 and, in this particular case, J
represents the solution of a prescribed vortex T = T

(either fixed in space or moving) in a uniform free

stream. Also, the flux vectors and S are allows the boundary surfaces in the physical plane

given by to be mapped onto rectangular surfaces in the trans-
formed plane as shown in Fig. 3. Moreover, this

PU PV simplifies the procedure of grid point clustering in

puU + 4 p PUV + np field gradients. This is particularly important in
E J- + J-1 the present problem because of the presence of the

pvU + yp [PvV + nyp interacting vortex and shock waves.

L e + p)U - tpj e + p)v - npJ The primitive variables of Eq. (1) are theJ density p, the mass fluxes pu, pv in the two

(2) coordinate directions x and y and the total energy
per unit volume e. In Eq. (2) p represents the

0 pressure, nondimensionalized by yp,; density p
by p_; velocity components u, v in x and y

2+ T
2
)u + (p/3)nx(nxu + n v directions by a.; and the energy e by p,,a.

x y l x x yV n The chord of the airfoil, C, is chosen as the
-(n + n

2
)v + (Ij/3)n (nxu + nyV ) reference length scale and is assumed equal to I-

x y ( y unity. The nondimensionalization also produces

KPra
1
(y - l)(n 2 

+ n2 )a a2  parameters such as Reynolds number (Re) and Prandtl
x y P number (Pr). The second coefficient of viscosity

+ W(n
2 

+ n
2

)(u
2 + v2) /2 X is assumed equal to -2/3 p, after Stokes

x y hypothesis.

+(¢i/3)(n u + iiyv)(fxU + ny v The pressure, density, and velocity components

are related to the energy per unit volume by the
where U and V are the contravariant velocities equation of state which is written for a perfect
along the C and directions given by gas as

U=4 + u+4V e + p 2 v2)
Vn +-v (7)"- v = 2

V t+ nxU nyV

2.2 Boundary and Initial Conditions

The matrices &t, x, etc., are easily formed

from the derivatives of x-, wj, etc., using the Although Eq. (1) is solved for the perturbation

relations quantity (j - jo)' the boundary conditions are still .

applied only to the solution variable j. jo, which

ix= -is the solution of Euler equations, is supposed to
S

= -J be known, as described below.

Cy -Jx n  y =yJx (4) The boundary conditions used are applied

an i n explicitly. Figure 3 shows a schematic of the solu-
t =-_XTFx - YT y T t =-Tnx T Yy tion domain. Along the outer boundary f-g-h free-

stream values are specified. At the outflow bound-
and J is tl,e transformation Jacobian given by aries e-f and a-h, a simple linear extrapolation

is used for p, ou, and pv. For supersonic flow
J= 4xny- 4y x = /(x yf - xnyF) (5) the total energy e is also extrapolated; but for

subsonic flow pressure is held fixed to a constant

. ..-~.. 3



K = coefficient of thermal conductivity field computations of a vortex interaction with a
stationary rotorcraft airfoil.

A = second coefficient of viscosity
Current numerical algorithms to compute

1 = coefficient of viscosity unsteady transonic vortical flows of the helicopter
rotor are frequently either inadequate or too costly

En,T = transformed plane coordinates to use for routine design analysis of a large class
of two- and three-dimensional flow fields. Unsteady

xFy,.. = metrics of transformation potential theory cannot be satisfactorily used for
xy such analyses unless major assumptions are made in

p = density modeling the nonlinear vortex wake structure.
Numerical algorithms based on the Euler equations

p_ = free stream density are suitable for any inviscid flow field simulation
but cannot be applied to flows dominated by viscous

= disturbance potential effects, in which case the only choice is to use the

Navier-Stokes equations. But current numerical
Subscripts algorithms for both Euler and Navier-Stokes equa-

tions used for unsteady flow computations have large
v = refers to vortex computer time and storage requirements.

= refers to free stream The motivation for the present study is two-
fold. The first of these is to apply a modified
form of Euler and thin layer Navier-Stokes two-

I. Introduction dimensional codes for computing the rotational com-
pressible flow field of the interaction of a vortex

The interaction of concentrated vortices with with a stationary rotorcraft airfoil made up of
lifting surfaces is encountered in many aerodynamic either NACA 0012 or NACA 64A006 profiles. The cases
and fluid dynamic applications. Although poorly of interacting vortex fixed in space in the flow
understood, the interaction mechanism can have a field as well as convecting past the airfoil will be
significant influence on the aerodynamics, aeroelas- considered so as to better understand the flow
ticity, and aeroacoustics of maneuvering vehicles phenomenon and to provide benchmark solutions for
and especially so in the transonic flow regime. checking out more approximate engineering prediction
This is because in transonic flow the shock wave techniques. The second objective is to further the

position and strength are sensitive to small changes methodology of existing numerical procedures so that
in the flow parameters. Of particular interest, in advanced simulations of full helicopter flow fields
the present study, is the interaction encountered in are possible when more powerful computers become

helicopter rotor flow field. The interaction of a available.
trailing vortex wake in such a flow field with the

oncoming rotor blades can induce unsteady blade With the above objectives in mind, an implicit
loading and aerodynamic noise. The blade tips, finite difference procedure for solving the
which trail strong and concentrated tip vortices, unsteady, two-dimensional thin layer Navier-Stokes
trace out prolate cycloidal paths in space, leading equations in conservation-law form of Steger

2 
was

to a variety of possible blade-vortex interactions, modified to implement the perturbation scheme of
The generic problem, shown schematically in Fig. 1, Buning and Stegerg to resolve non-uniform incoming
can be viewed as an unsteady, three-dimensional streams (vortex in the present study) without having
close encounter of a curved-line vortex, at an arbi- to specify far-field grid refinement. This was

trary intersection angle A, with a high aspect- further modified to include the quasi-steady (vortex
ratio lifting surface that is executing combined fixed) and unsteady (vortex free) vortex effects to
rotational and translational motion at transonic compute the interaction flow field. Although the
speeds. The limiting cases of such encounter for concentrated vortex is analytically specified and
A = 0' and 90* are illustrated in Figs. 2a and 2b, preserved in this study, an actual experimental
respectively; the former encounter is essentially vortex can easily be substituted in its place. (It
two-dimensional but unsteady, whereas the latter can should be mentioned that the code has the provision
be considered as steady but highly three-dimensional, to turn off viscosity and modify the boundary con-
For more discussion of these representations and ditions to make Euler calculations if and when
their aeroacoustic implications, the reader is needed.)
referred to a recent paper by George and Chang.

1

Parallel computations of this interacting flow
Under certain flight conditions, helicopter field are also done using ATRAN2 code4 (transonic

rotor produces an impulsive, highly directional small disturbance approximation to the velocity
noise at a regular frequency corresponding to the potential equation). ATRAN2 code is a modification

blade passage frequency. At least two mechanisms of Ballhaus and Goorjian's LTRAN2 code
s 

to include

are thought to be responsible for this impulsive the high frequency term Ott and concentrated or

noise, also called the "blade slap": 1) shock for- distributed rotational disturbances in the flow

mation on the advancing side of the blade due to field.
local transonic flow, and 2) unsteady lift fluctua-
tions on the blade due to interaction of the tip In this paper the numerical ,rmulations are

vortex from the preceding blade. In order to shed discussed in Section 2. Results d discussion are
some light on the understanding of this second presented in Section 3 and the conclusions are
mechanism (corresponding to the case of Fig. 2a), summarized in Section 4.
the present study prepared groundwork for a future

P aeroacoustic and vibratory airloads computation

capability by making unsteady two-dimensional flow-

2 *
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NUMERICAL SIMULATION OF THE INTERACTION OF A VORTEX WITH STATIONARY AIRFOIL IN TRANSONIC FLOW

C. R. Srinivasan*
Flow Simulations, Inc., Sunnyvale, California

W. J. McCroskeyt and P. Kutler-
NASA Ames Research Center, Moffett Field, California

Abstract I = identity matrix

A perturbation form of an implicit conserva- J = transformation Jacobian
tive, noniterative numerical algorithm for the two-
dimensional thin layer Navier-Stokes and Euler equa- M_ = free stream Mach number
tions is used to compute the interaction flow field
of a vortex with stationary airfoil. A Lamb-like Pr = Prandtl number "3
analytical vortex having a finite core is chosen to
interact with a thick (NACA 0012) and a thin (NACA p = pressure
64A006) airfoil independently in transonic flow.
Two different configurations of vortex interaction p. = free stream static pressure
are studied, isi.,.l) when the vortex is fixed at

one location in the flow field; and 2) when the = velocity vector
vortex is convecting past the airfoil at free stream

velocity. Parallel computations of this interacting = velocity induced by the vortex,
flow field are also done using a version of the V iuv + Jvv
Transonic Small Disturbance Code (ATRAN2). A spe-

cial treatment of the leading edge region for thin Q_ = free stream velocity
airfoils is included in this code. With this, the
three methods gave qualitatively similar results for q = unknown flow field vector
the weaker interactions considered in this study.
However, the strongest interactions considered = Euler solution of vortex in a uniform
proved to be beyond the capabilities of the small 0 free stream
disturbance code.t The results also show a far

greater influence of the vortex on the airfoil flow Re = Reynolds number

field when the vortex is stationary than when it is
convecting with the flhw. r = radial distance from the vortex center

to = initial position of the vortex, ix0 + Jy
Nomenclature

r ff= airfoil leading edge radius

A,B = Jacobian matrices
S f= viscous flux vectoran  ff vortex core radius

a - vrex creadoudse U,V = contravariant velocity components

a_ -free stream sound speed
u_ = free stream x-velocity

C = characteristic length scale, chord of
the airfoil u,v = velocity components in physical plane in

x and y directions

CD = drag coefficient
u ,V = velocity components induced by the vortex

CL  = lift coefficient v v in x and y directions

C = lift equivalent vortex strength v0 = circumferential direction
LV

C = coefficient of pressure Xy = initial vortex location in the flow field

E,Eo = flux vectors XY v  = instantaneous position of the vortex

e = total energy per unit volume x,y,t = physical plane coordinates

FFo = flux vectors a = angle of attack

Ht  = total enthalpy = compressibility factor, (I -!)

y = ratio of specific heats
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,Senior Staff Scientist, U.S. Army Aeromechan- r = strength of vortex

ics Laboratory and NASA Thermo- and Gas-Dynamics
Division. Associate Fellow AIAA. = smoothing coefficients
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